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Abstract—The human alveolar wall was modeled here as 

membranes and its resonant frequency was determined in order 

to analyze the mechanism of alveolar resonance of the 

ultrasound induced lung hemorrhage. The resonant frequency 

of the membrane models of the human alveolar wall was 

determined to be within the range of the frequency of diagnostic 

ultrasound used in the thoracic and abdominal regions; which 

is > 2.5 MHz. Thus, the alveolar resonance is proved to occur 

during the diagnostic ultrasound imaging of humans. However 

the possibility of alveolar wall damage at resonance was not 

analyzed here. Nevertheless according to the resonant frequency 

equations derived here, the resonance of the alveolar wall by 

diagnostic ultrasound waves can be eliminated from occurring 

when total lung capacity is ~ 20% (at maximal expiration). 

 
Index Terms—Alveolar resonance, lung hemorrhage, 

resonant frequency, ultrasound.  

 

I. INTRODUCTION 

The ultrasound (US) is widely used in the medical field as 

an indispensable tool for non-invasive diagnostic imaging and 

therapy. When compared to other medical imaging 

procedures, the clinical use of the diagnostic US has had good 

safety record with no documented cases of adverse effects on 

humans [1]. The historical truth is that the US was thought to 

be relatively safe until the year 1951, when researchers 

developing the diagnostic US equipments, became aware of 

the potential risk to tissues and organs [2]. 

The frequency of US normally used for diagnostic imaging 

purposes is in the range of 1 – 10MHz depending on the 

procedures [3]. Nevertheless, the US at diagnostic imaging 

level too can be shown to cause variety of bio-effects in tissue 

(in vitro and in vivo) depending on the exposure conditions 

and tissue structures. Particularly in the lungs, the US 

interaction is seen to be intensified because the lungs are such 

delicate structure with many air interfaces with tissue. The US 

induced lung damage has been observed in animal 

experimentations at the exposure levels of US examinations 

for humans. Lung lesions due to pulsed US have been seen to 

occur in mice, rats, rabbits, apes and pigs [4] – [7]. This US 

induced damage to the lung’s microvasculature is 
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characterized by localized extravasations of red blood cells 

from capillaries into the alveolar space [8]. 

Both thermal and mechanical mechanisms have been 

proposed as to understand what the cause of US induced lung 

hemorrhage is. Nevertheless, the thermal mechanism (heating 

effect) has been ruled out as there are evidences of it failing to 

explain lung hemorrhage. Heating effect of US waves 

resulting in lung tissue damage, have been experimentally 

excluded by using thermocouple measurements [9] and by 

using pathological analyzation of laser induced lesion [10]. 

Particularly, the mechanical mechanism known as inertial 

cavitations have been widely researched. Inertial cavitations 

is the bursting of the micro-bubbles through resonance 

induced by US waves, causing high energy emanations that 

damages surrounding tissues [11]. Although gas in tissue is 

present as in the alveoli, the theory of acoustic inertial 

cavitations as the US damage mechanism in the lungs is not 

supported by some studies [12]. There is evidence of 

increased hydrostatic pressure increasing lung damage, which 

is the opposite of the inertial cavitations prediction [13]. 

There is another mechanical mechanism known as the 

alveolar resonance which might explain the US induced lung 

hemorrhage. The mechanism suggests that US propagation in 

lungs results in alveolar response to compression and 

tensional waves [14]. This deformation might damage the 

components within alveolar wall. However, there are no 

mathematical calculations or experimental data or models that 

support or disprove the mechanism of alveolar resonance in 

producing US induced lung hemorrhage. 

 

II. THEORY 

A. The Alveolus Structure 

An alveolus is actually not spherical but is in fact polygonal 

[15]. The alveolus is shaped more alike a multifaceted 

polygon with almost flat surface walls and can be represented 

by a dodecahedron as in Fig. 1 [16]. 

Within the alveolar wall, the capillaries are arranged as a 

single layer separated from air spaces by a thin cellular barrier 

called the blood gas barrier (BGB). The BGB is relatively 

very thin (about 200 nm) and due to its inability to expand 

under oscillation, it is susceptible to rupture [17].  

The elastic tension of the alveolar wall depends on the 

strain caused by normal tidal breathing. During inspiration 

and expiration of the normal breath, the alveolus undergoes 

major changes in dimension only between 0% to 20% of Total 

Lung Capacity (TLC) [18]. However the resulting strain from 
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0% to 20% TLC is about zero because the walls are not 

stretched but are just unfolded (recruitment). From 20% TLC 

onwards (after recruitment), the alveolus size changes only 

slightly from 0 – 0.05 linear strain during normal tidal 

breathing [19].  This translate to areal strain of 0 – 0.1025 

(Appendix A).  

 
Fig. 1.  The alveolus represented as a dodecahedron. 

B. The Two Dimensional Wave Equation 

The two dimensional wave equation is formulated by 

focusing on an element in the membrane. The Fig. 2 shows an 

arbitrary element dx-dy of membrane and the tension forces, T 

acting on it while displacement is z at time, t.  

The two dimensional wave’s equation is [21];  

 

])/[]/([/ 2222222 yzxzctz T       
                  

(1) 

 

With transverse wave velocity;  

½)/( TcT  .              (2) 

The area density, σ is mass over area. The best coordinate 

system must be selected for a membrane shape so that the 

wave equation can be solved to obtain the resonant frequency 

equation. 

 
Fig. 2. The axes (x, y, z) and forces (Tdx, Tdy) on a membrane element with 

displacement z. 

 

III. METHODOLOGY 

The very first step taken in this study of the alveolar 

resonance is to examine and simplify the alveolar wall into 

structural model. Certain assumptions were made for the 

modeling purposes. The alveolar wall is assumed as 

homogenous, isotropic and linearly elastic clamped 

membrane. 

Next, the theory of vibration was applied to the alveolar 

wall model to determine the resonant frequency equation. 

Then, the risks of US induced lung hemorrhage was analyzed 

and predicted based on this study. Preventive measures 

concerning US induced lung hemorrhage were also 

determined. 

The application of the theory of vibration on membrane has 

a certain restriction. A suitable coordinate system is needed in 

order to easily determine the boundary condition of the 

membrane [20]. This is to ensure that the resulting partial 

differential equation (PDE) arising from the application of 

vibration theory on the membrane, is not extremely 

complicated and is not only partially or approximately 

solvable [21].  

The simple Cartesian coordinate system fits the boundaries 

of the square or rectangular four-sided polygon. Thus for 

simplification purposes, the shape of the alveolar wall facet is 

proposed and modeled here as a four-sided square membrane 

as shown in Fig. 3. 

Resonant frequency of square membrane with side-length, 

L at nx and ny mode is [21]; 

 
½221

, ][ yxnn nnLc½f Tyx                           
(3) 

 

Likewise, the polar coordinate system fits the boundaries of 

the circular shape, and so the resulting PDE from the 

application of vibration theory can also be solved completely. 

Thus for simplification purposes, the shape of the alveolar 

wall facet is also proposed and modeled here as a circular 

membrane too (Fig. 4).  

Resonant frequency of circular membrane with radius, r at 

n mode is [21];  

 

]¼[ ½ 1   nrcf Tn            (4) 

 

 

Fig. 3. The Cartesian coordinates for the square membrane. 
 

 

Fig. 4. The polar coordinates for the circular membrane.
 

 

IV.

 

RESULTS AND DISCUSSION

 

The resonant frequency of the membrane models of the 

alveolar wall basically depends on the transverse wave 

velocity in membrane, the dimension of the alveolar wall 

(side-length or radius) and the vibration modes. 

A.

 

Transverse Wave Velocity 

The tension, T of the membrane is primarily the elastic 

tension and is dependent on the membranes’ Young’s 

modulus, E; the areal strain of tidal breath, εb and the 

membrane thickness, d (Appendix B). 
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The facets of the alveolar structure are shaped as flat 

irregular polygons that are made of the thin alveolar wall [15]. 

For the simplification in modeling purposes, it is thus 

proposed here for the alveolar wall facets to be reduced as 

regular polygons. 



  

 dET b                       (5) 

 

The Young’s modulus equation can be determined by 

utilizing its relationship with the bulk modulus, K. The 

Poisson ratio of material is denoted as u while ρ is the 

membranes’ density and cL is the longitudinal wave speed.  

 

)21(3 uKE                     (6) 

)21]([3 2 ucE L                            (7) 

 

A relationship between wave velocities and the areal strain 

of tidal breath for the membrane models of the alveolar wall 

was derived through applying (5) and (7) into (2);  

 
½½)63( bLT cuc                        (8) 

 

The Poisson’s ratio for alveolar wall have the value ranging 

from 0.35 – 0.45 [22]. The longitudinal speed of sound wave 

in soft tissues ranges from 1490 m/s – 1610 m/s at 37
o
C body 

temperature [23]. Whenever calculations involve ranges, the 

interval arithmetic method should be used. Here the alveolar 

wall is modeled as membranes and the substitution of alveolar 

wall’s characteristic interval values into (8) results in; 

 
½1527.38} {816.11, bTc   m/s                 (9)

 

 

B. The Resonant Frequency of Square Membrane Model 

The resonant frequency equation of the square membrane 

model of the alveolar wall was analyzed by using the human 

alveolus. The radius of human alveolus ranges from 100 – 200 

μm [24]. If the facets of the alveolar wall are modeled as a 

square shaped membrane, then the length dimension is the 

side-length which can be estimated as twice the radius. Thus 

the side-length in interval notation is {200, 400} μm.  

The fundamental frequency occur when the mode is at nx = 

ny = 1. If the side-length range and (9) are substituted into (3), 

then the fundamental frequency equation (in vacuum) for the 

square membrane model of human alveolar wall will be;  

 
½5.400} {1.443,1,1 bf   MHz                    (10) 
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Fig. 5. The ranges of fundamental frequency vs. areal strain of tidal breath 

with upper limit for 200 μm side-lengths and lower limit for 400 μm 

side-lengths of the modeled square membrane of the human alveolar wall. 

 

The relationship between the fundamental frequencies of 

the square membrane model of the human alveolar wall, and 

the areal strain due to tidal breath can be analyzed in Fig. 5. 

The fundamental frequency exceeds 1 MHz when the tidal 

breath areal strain is higher than 0.0343 to until its limit at 

0.1025. At the maximum tidal breath areal strain of 0.1025, 

the maximum fundamental frequency is determined to be 

1.729 MHz.  

For illustrative purposes, the modes frequencies for the 

square membrane model when transverse wave velocity is 

100 m/s and the mean alveolar side-length dimension in 

human is 300 μm, is calculated and then depicted in Fig. 6.  
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Fig. 6. The resonant frequencies mode values (in vacuum) of the square 

membrane model of the human alveolar wall at 100 m/s transverse wave for 

300 μm side-length. 
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Fig. 7. The relation between fundamental frequency ranges with membrane 

areal strain of tidal breath for the modelled circular membrane of the human 

alveolar wall with upper limit for 100 μm and lower limit for 200 μm radius. 

 

The relationship between the fundamental frequencies of 

human alveolar wall (when modeled as a circular membrane) 

and the areal strain of tidal breath can be analyzed in Fig. 7. 

The fundamental frequency exceeds 1 MHz at areal strain of 

tidal breath value of 0.0305 to till the maximum of 0.1025. At 

maximum tidal breath areal strain of 0.1025, the maximum 

fundamental frequency is 1.834 MHz. 

Mode, nx, ny 
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½22
, ][1667.0 yxnn nnf yx  MHz              (11)

C. The Resonant Frequency of Circular Membrane Model

The resonant frequency equation of the circular membrane 

model of the alveolar wall was studied by using the human

alveolus. If the membrane model surface is considered as 

circular, then the length dimension is the radius (ro) 

equivalent to the human alveolus radius of {100, 200} μm.

The fundamental frequency occur when the mode is at n = 1. 

Thus the fundamental frequency equation (in vacuum) for the 

circular membrane model of the human alveolar wall was 

derived by substituting (9) and the alveolar radius range into 

(4). 

½5.728}{1.530,1 bf  MHz                  (12)



  

For illustrative purposes, the modes resonant frequencies 

for the circular membrane model of the alveolar wall when 

transverse wave velocity is 100 m/s for the 150 μm mean 

radius human alveolar wall, is depicted in Fig. 8.  

 

]¼[3333.0  nfn                     (13)  
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Fig. 8. The mode resonant frequencies values of the circular membrane 

model of the human alveolar wall when transverse wave velocity is 100 m/s 

for 150 μm mean radius. 

 

V. DISCUSSION 

It is considered that if the US frequency matches the 

resonant frequencies of membranes models, then resonance 

occurs in alveolar wall resulting in possible damage 

(depending on US pressure). The frequency normally used in 

diagnostic US is > 1 MHz. However for the imaging of the 

organs in the thoracic and abdominal regions, the US of > 2.5 

MHz is utilized [25]. Hence the lungs are normally exposed to 

US frequencies of > 2.5 MHz.  

From the calculations of this study, the fundamental 

frequencies of the human alveolar wall (when modeled as 

square and circular vibrating membranes) have the maximum 

values of 1.729 MHz and 1.834 MHz respectively. 

Nevertheless, the higher modes resonant frequencies which 

are multiples of the fundamental frequency can be > 2.5 MHz 

(within the diagnostic US frequency range) as depicted in Fig. 

7 and 8. This means there is a possibility for the alveolar 

structure in humans to be affected by diagnostic US exposure 

through higher mode resonance only. Thus it is proven here 

that the alveolar structure is not too large to oscillate and to be 

affected in regard of the diagnostic US frequency range as 

stated by some studies [26].  

The resonant frequency of the alveolar wall (as according 

to the membrane models) does depend on the transverse wave 

velocity which can have the value 0 – 489 m/s depending on 

the areal strain of tidal breath from 0 – 0.1025.  

The resonant frequency can be made non-existent (0 MHz) 

if the transverse wave velocity in the membrane is also 0 m/s. 

This occurs when areal strain of tidal breath is  ~0 when lungs’ 

volume is under 20% TLC (maximal expiration). Thus 

according to this study, it is possible to avoid the US induced 

lung hemorrhage by keeping the TLC ~20% during US 

exposure in order for the alveolar wall to not have any 

resonant frequency and so in any way to be affected. This 

could be recommended (based on this study) as a preventive 

measure to avoid US induced lung hemorrhage from 

occurring in humans.  

The alveolar wall was modeled as a two dimensional 

vibrating membrane instead of as vibrating plate because the 

stiffness value was deemed to be too small and approaching 

zero [27]. It was assumed that the membrane models had fixed 

boundary (clamped) as the alveolar wall is supported by other 

alveolar walls at the edge. The alveolar wall was further 

assumed as being homogenous because it is continuous, 

isotropic because it is directionally independent to stress and 

linearly elastic because it contains elastin fibers and the strain 

is small. 

APPENDIX 

A. Areal Strain of Tidal Breath 

The relation between areal strain and linear strain obtained 

from [29];  

1)1( ½    

During normal tidal breathing, the linear strain changes 

between 0 < α < 0.05 [19] and so the areal strain changes;   
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B. The Formulae of Tension in Membrane  

Assume that an arbitrary piece of membrane which at zero 

external stress has an area, A0, is stretched to a size A1 > A0 as 

seen in Fig. 9. The energy change at lowest form is;  

 

stretchU  2
1 0 0( ) /stretch½k A A A  

 

where the modulus kstretch is the proportionality constant 

between a quadratic deviation of the area from its unstressed 

state and the respective energy. The additional A0
-1 

is a 

physics convention [28]. 

The tension under which the membrane is subjected to, is 

the derivative of energy with respect to area; 
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The defined dimensionless areal strain is, ε = (A1 – A0) / A0. 

The constant of proportionality is, kstretch= E d, where E is 

Young’s modulus and d is membrane thickness. The 

membrane tension equation follows the Hooke’s Law for 

membrane stretching, where stress is proportional to strain 

and to the constant of proportionality kstretch. 

  
Fig. 9. The deformation of an area. 
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