IJBBB 2019 Vol.9(2): 82-89 ISSN: 2010-3638
doi: 10.17706/ijbbb.2019.9.2.82-89
doi: 10.17706/ijbbb.2019.9.2.82-89
A Machine Learning Approach for Gene Regulatory Network Inference
Meroua Daoudi, Souham Meshoul, and Fariza Tahi
Abstract—Transcription factors are key elements in the regulation of genetic expressions. Understanding
the behavior of the system is the ultimate goal behind modeling biology networks including gene regulatory
networks. Prediction of regulation relationship between a transcription factor and a target gene can be
viewed as a machine learning problem. Within this perspective, several algorithms have been developed to
solve this problem using primordially support vector machine. In this work, we propose a semi-supervised
approach to infer gene regulatory networks using both unsupervised and supervised techniques. First a set
of reliable negative examples are extracted using clustering’s techniques. Then we use this set for
classification using SVM. We have applied the proposed method to simulated data of Escherichia Coli, the
experimental results show the competitiveness of the proposed approach as the prediction accuracy of the
most tested case is achieved to the best desired value.
Index Terms—Gene regulatory network, machine learning, semi-supervised learning, supervised learning, unsupervised learning.
Meroua Daoudi is with Computer Science Dept, Constantine 2 University, Algeria. She is also with MISC Laboratory, Constantine 2 University, Algeria.
Souham Meshoul is with Computer Science Dept, Constantine 2 University, Algeria.
Fariza Tahi is with IBISC/CNRS Lab Evry, 91000 France.
Index Terms—Gene regulatory network, machine learning, semi-supervised learning, supervised learning, unsupervised learning.
Meroua Daoudi is with Computer Science Dept, Constantine 2 University, Algeria. She is also with MISC Laboratory, Constantine 2 University, Algeria.
Souham Meshoul is with Computer Science Dept, Constantine 2 University, Algeria.
Fariza Tahi is with IBISC/CNRS Lab Evry, 91000 France.
Cite: Meroua Daoudi, Souham Meshoul, and Fariza Tahi, "A Machine Learning Approach for Gene Regulatory Network Inference," International Journal of Bioscience, Biochemistry and Bioinformatics vol. 9, no. 2, pp. 82-89, 2019.
General Information
ISSN: 2010-3638 (Online)
Abbreviated Title: Int. J. Biosci. Biochem. Bioinform.
Frequency: Quarterly
DOI: 10.17706/IJBBB
Editor-in-Chief: Prof. Ebtisam Heikal
Abstracting/ Indexing: Electronic Journals Library, Chemical Abstracts Services (CAS), Engineering & Technology Digital Library, Google Scholar, and ProQuest.
E-mail: ijbbb@iap.org
-
Sep 29, 2022 News!
IJBBB Vol 12, No 4 has been published online! [Click]
-
Jun 23, 2022 News!
News | IJBBB Vol 12, No 3 has been published online! [Click]
-
Dec 20, 2021 News!
IJBBB Vol 12, No 1 has been published online! [Click]
-
Sep 23, 2021 News!
IJBBB Vol 11, No 4 has been published online! [Click]
-
Jun 25, 2021 News!
IJBBB Vol 11, No 3 has been published online! [Click]
- Read more>>