IJBBB 2019 Vol.9(1): 20-26 ISSN: 2010-3638
doi: 10.17706/ijbbb.2019.9.1.20-26
doi: 10.17706/ijbbb.2019.9.1.20-26
BreastNet: Entropy-Regularized Transferable Multi-task Learning for Classification with Limited Breast Data
Jialin Shi, Ji Wu, Ping Lv, Jiajia Guo
Abstract—We describe a framework to automatically separate malignant from benign breast lesions using
limited breast ultrasound data. The main uniqueness of this framework includes: (1) in terms of the unique
shape features of breast lesions, two types of image patches are designed to fine-tune pre-trained models,
aiming to characterize the overall appearance and heterogeneity in shapes of breast lesions. (2) taking the
BI-RADS regression task as an auxiliary task, a multi-task architecture is proposed to improve the accuracy
of classification. (3) instead of prevalent cross-entropy loss, we introduce training with confusion by means
of regularizing prediction entropy to prevent overfitting. Extensive experimental results on small-scale
breast ultrasound dataset corroborate that the proposed framework is superior to the state-of-the-art
approaches in breast lesions classification with limited data. Besides, we provide detailed analysis of the
choice of regularizing parameter and visual evidence that introduction of confusion leads to increase in
feature generalization.
Index Terms—Breast ultrasound classification, multi-task learning, regularizing prediction entropy, transfer learning.
Jialin Shi, Ji Wu, Ping Lv are with Department of Electrical Engineering, Tsinghua University, Beijing, China (email: shi-jl16@mails.tsinghua.edu.cn).
Jiajia Guo is with The people’s Hospital of Peking University, Beijing, China.
Index Terms—Breast ultrasound classification, multi-task learning, regularizing prediction entropy, transfer learning.
Jialin Shi, Ji Wu, Ping Lv are with Department of Electrical Engineering, Tsinghua University, Beijing, China (email: shi-jl16@mails.tsinghua.edu.cn).
Jiajia Guo is with The people’s Hospital of Peking University, Beijing, China.
Cite: Jialin Shi, Ji Wu, Ping Lv, Jiajia Guo, "BreastNet: Entropy-Regularized Transferable Multi-task Learning for Classification with Limited Breast Data," International Journal of Bioscience, Biochemistry and Bioinformatics vol. 9, no. 1, pp. 20-26, 2019.
General Information
ISSN: 2010-3638 (Online)
Abbreviated Title: Int. J. Biosci. Biochem. Bioinform.
Frequency: Quarterly
DOI: 10.17706/IJBBB
Editor-in-Chief: Prof. Ebtisam Heikal
Abstracting/ Indexing: Electronic Journals Library, Chemical Abstracts Services (CAS), Engineering & Technology Digital Library, Google Scholar, and ProQuest.
E-mail: ijbbb@iap.org
-
Sep 29, 2022 News!
IJBBB Vol 12, No 4 has been published online! [Click]
-
Jun 23, 2022 News!
News | IJBBB Vol 12, No 3 has been published online! [Click]
-
Dec 20, 2021 News!
IJBBB Vol 12, No 1 has been published online! [Click]
-
Sep 23, 2021 News!
IJBBB Vol 11, No 4 has been published online! [Click]
-
Jun 25, 2021 News!
IJBBB Vol 11, No 3 has been published online! [Click]
- Read more>>